dtu_yao_eval.py 5.8 KB
Newer Older
Gangwei Xu's avatar
Gangwei Xu 已提交
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
from torch.utils.data import Dataset
import numpy as np
import os
from PIL import Image
from datasets.data_io import *
import cv2


class MVSDataset(Dataset):
    def __init__(self, datapath, listfile, nviews=5, img_wh=(1600, 1152)):
        super(MVSDataset, self).__init__()
        self.levels = 4
        self.datapath = datapath
        self.listfile = listfile
        self.nviews = nviews
        self.img_wh = img_wh
        self.metas = self.build_list()

    def build_list(self):
        metas = []
        with open(self.listfile) as f:
            scans = f.readlines()
            scans = [line.rstrip() for line in scans]

        for scan in scans:
            pair_file = "{}/pair.txt".format(scan)
            # read the pair file
            with open(os.path.join(self.datapath, pair_file)) as f:
                num_viewpoint = int(f.readline())
                # viewpoints (49)
                for view_idx in range(num_viewpoint):
                    ref_view = int(f.readline().rstrip())
                    src_views = [int(x) for x in f.readline().rstrip().split()[1::2]]
                    metas.append((scan, ref_view, src_views))
        print("dataset", "metas:", len(metas))
        return metas

    def __len__(self):
        return len(self.metas)

    def read_cam_file(self, filename):
        with open(filename) as f:
            lines = f.readlines()
            lines = [line.rstrip() for line in lines]
        # extrinsics: line [1,5), 4x4 matrix
        extrinsics = np.fromstring(' '.join(lines[1:5]), dtype=np.float32, sep=' ').reshape((4, 4))
        # intrinsics: line [7-10), 3x3 matrix
        intrinsics = np.fromstring(' '.join(lines[7:10]), dtype=np.float32, sep=' ').reshape((3, 3))

        depth_min = float(lines[11].split()[0])
        depth_max = float(lines[11].split()[-1])
        return intrinsics, extrinsics, depth_min, depth_max

    
    def read_mask(self, filename):
        img = Image.open(filename)
        np_img = np.array(img, dtype=np.float32)
        np_img = (np_img > 10).astype(np.float32)
        return np_img

    def read_img(self, filename):
        img = Image.open(filename)
        # scale 0~255 to -1~1
        np_img = 2*np.array(img, dtype=np.float32) / 255. - 1
        np_img = cv2.resize(np_img, self.img_wh, interpolation=cv2.INTER_LINEAR)

        h, w, _ = np_img.shape
        np_img_ms = {
            "level_3": cv2.resize(np_img, (w//8, h//8), interpolation=cv2.INTER_LINEAR),
            "level_2": cv2.resize(np_img, (w//4, h//4), interpolation=cv2.INTER_LINEAR),
            "level_1": cv2.resize(np_img, (w//2, h//2), interpolation=cv2.INTER_LINEAR),
            "level_0": np_img
        }
        return np_img_ms

    def __getitem__(self, idx):
        scan, ref_view, src_views = self.metas[idx]
        # use only the reference view and first nviews-1 source views
        view_ids = [ref_view] + src_views[:self.nviews - 1]
        img_w = 1600
        img_h = 1200
        imgs_0 = []
        imgs_1 = []
        imgs_2 = []
        imgs_3 = []

        depth_min = None
        depth_max = None

        proj_matrices_0 = []
        proj_matrices_1 = []
        proj_matrices_2 = []
        proj_matrices_3 = []

        for i, vid in enumerate(view_ids):
            img_filename = os.path.join(self.datapath, '{}/images/{:0>8}.jpg'.format(scan, vid))
            proj_mat_filename = os.path.join(self.datapath, '{}/cams_1/{:0>8}_cam.txt'.format(scan, vid))

            imgs = self.read_img(img_filename)
            imgs_0.append(imgs['level_0'])
            imgs_1.append(imgs['level_1'])
            imgs_2.append(imgs['level_2'])
            imgs_3.append(imgs['level_3'])

            intrinsics, extrinsics, depth_min_, depth_max_ = self.read_cam_file(proj_mat_filename)
            intrinsics[0] *= self.img_wh[0]/img_w
            intrinsics[1] *= self.img_wh[1]/img_h
            proj_mat = extrinsics.copy()
            intrinsics[:2,:] *= 0.125
            proj_mat[:3, :4] = np.matmul(intrinsics, proj_mat[:3, :4])
            proj_matrices_3.append(proj_mat)

            proj_mat = extrinsics.copy()
            intrinsics[:2,:] *= 2
            proj_mat[:3, :4] = np.matmul(intrinsics, proj_mat[:3, :4])
            proj_matrices_2.append(proj_mat)

            proj_mat = extrinsics.copy()
            intrinsics[:2,:] *= 2
            proj_mat[:3, :4] = np.matmul(intrinsics, proj_mat[:3, :4])
            proj_matrices_1.append(proj_mat)

            proj_mat = extrinsics.copy()
            intrinsics[:2,:] *= 2
            proj_mat[:3, :4] = np.matmul(intrinsics, proj_mat[:3, :4])
            proj_matrices_0.append(proj_mat)


            if i == 0:  # reference view
                depth_min = depth_min_
                depth_max = depth_max_

        imgs_0 = np.stack(imgs_0).transpose([0, 3, 1, 2])
        imgs_1 = np.stack(imgs_1).transpose([0, 3, 1, 2])
        imgs_2 = np.stack(imgs_2).transpose([0, 3, 1, 2])
        imgs_3 = np.stack(imgs_3).transpose([0, 3, 1, 2])
        imgs = {}
        imgs['level_0'] = imgs_0
        imgs['level_1'] = imgs_1
        imgs['level_2'] = imgs_2
        imgs['level_3'] = imgs_3
        # proj_matrices: N*4*4
        proj_matrices_0 = np.stack(proj_matrices_0)
        proj_matrices_1 = np.stack(proj_matrices_1)
        proj_matrices_2 = np.stack(proj_matrices_2)
        proj_matrices_3 = np.stack(proj_matrices_3)
        proj={}
        proj['level_3']=proj_matrices_3
        proj['level_2']=proj_matrices_2
        proj['level_1']=proj_matrices_1
        proj['level_0']=proj_matrices_0


        return {"imgs": imgs,                   # N*3*H0*W0
                "proj_matrices": proj,          # N*4*4
                "depth_min": depth_min,         # scalar
                "depth_max": depth_max,         # scalar
                "filename": scan + '/{}/' + '{:0>8}'.format(view_ids[0]) + "{}"}