extractor.py 7.3 KB
Newer Older
Gangwei Xu's avatar
Gangwei Xu 已提交
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import torch
import torch.nn as nn
import torch.nn.functional as F
import timm
import math
from .submodule import *

class ResidualBlock(nn.Module):
    def __init__(self, in_planes, planes, norm_fn='group', stride=1):
        super(ResidualBlock, self).__init__()
  
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, padding=1, stride=stride)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1)
        self.relu = nn.ReLU(inplace=True)

        num_groups = planes // 8

        if norm_fn == 'group':
            self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
            self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
            if not (stride == 1 and in_planes == planes):
                self.norm3 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
        
        elif norm_fn == 'batch':
            self.norm1 = nn.BatchNorm2d(planes)
            self.norm2 = nn.BatchNorm2d(planes)
            if not (stride == 1 and in_planes == planes):
                self.norm3 = nn.BatchNorm2d(planes)
        
        elif norm_fn == 'instance':
            self.norm1 = nn.InstanceNorm2d(planes)
            self.norm2 = nn.InstanceNorm2d(planes)
            if not (stride == 1 and in_planes == planes):
                self.norm3 = nn.InstanceNorm2d(planes)

        elif norm_fn == 'none':
            self.norm1 = nn.Sequential()
            self.norm2 = nn.Sequential()
            if not (stride == 1 and in_planes == planes):
                self.norm3 = nn.Sequential()

        if stride == 1 and in_planes == planes:
            self.downsample = None
        
        else:    
            self.downsample = nn.Sequential(
                nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm3)


    def forward(self, x):
        y = x
        y = self.conv1(y)
        y = self.norm1(y)
        y = self.relu(y)
        y = self.conv2(y)
        y = self.norm2(y)
        y = self.relu(y)

        if self.downsample is not None:
            x = self.downsample(x)

        return self.relu(x+y)

class MultiBasicEncoder(nn.Module):
    def __init__(self, output_dim=[128], norm_fn='batch', dropout=0.0, downsample=3):
        super(MultiBasicEncoder, self).__init__()
        self.norm_fn = norm_fn
        self.downsample = downsample

        if self.norm_fn == 'group':
            self.norm1 = nn.GroupNorm(num_groups=8, num_channels=64)

        elif self.norm_fn == 'batch':
            self.norm1 = nn.BatchNorm2d(64)

        elif self.norm_fn == 'instance':
            self.norm1 = nn.InstanceNorm2d(64)

        elif self.norm_fn == 'none':
            self.norm1 = nn.Sequential()

        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=1 + (downsample > 2), padding=3)
        self.relu1 = nn.ReLU(inplace=True)

        self.in_planes = 64
        self.layer1 = self._make_layer(64, stride=1)
        self.layer2 = self._make_layer(96, stride=1 + (downsample > 1))
        self.layer3 = self._make_layer(128, stride=1 + (downsample > 0))
        self.layer4 = self._make_layer(128, stride=2)
        self.layer5 = self._make_layer(128, stride=2)

        output_list = []
        
        for dim in output_dim:
            conv_out = nn.Sequential(
                ResidualBlock(128, 128, self.norm_fn, stride=1),
                nn.Conv2d(128, dim[2], 3, padding=1))
            output_list.append(conv_out)

        self.outputs04 = nn.ModuleList(output_list)

        output_list = []
        for dim in output_dim:
            conv_out = nn.Sequential(
                ResidualBlock(128, 128, self.norm_fn, stride=1),
                nn.Conv2d(128, dim[1], 3, padding=1))
            output_list.append(conv_out)

        self.outputs08 = nn.ModuleList(output_list)

        output_list = []
        for dim in output_dim:
            conv_out = nn.Conv2d(128, dim[0], 3, padding=1)
            output_list.append(conv_out)

        self.outputs16 = nn.ModuleList(output_list)

        if dropout > 0:
            self.dropout = nn.Dropout2d(p=dropout)
        else:
            self.dropout = None

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)):
                if m.weight is not None:
                    nn.init.constant_(m.weight, 1)
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)

    def _make_layer(self, dim, stride=1):
        layer1 = ResidualBlock(self.in_planes, dim, self.norm_fn, stride=stride)
        layer2 = ResidualBlock(dim, dim, self.norm_fn, stride=1)
        layers = (layer1, layer2)

        self.in_planes = dim
        return nn.Sequential(*layers)

    def forward(self, x, dual_inp=False, num_layers=3):

        x = self.conv1(x)
        x = self.norm1(x)
        x = self.relu1(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)

        if dual_inp:
            v = x
            x = x[:(x.shape[0]//2)]

        outputs04 = [f(x) for f in self.outputs04]
        if num_layers == 1:
            return (outputs04, v) if dual_inp else (outputs04,)

        y = self.layer4(x)
        outputs08 = [f(y) for f in self.outputs08]

        if num_layers == 2:
            return (outputs04, outputs08, v) if dual_inp else (outputs04, outputs08)

        z = self.layer5(y)
        outputs16 = [f(z) for f in self.outputs16]

        return (outputs04, outputs08, outputs16, v) if dual_inp else (outputs04, outputs08, outputs16)

class Feature(SubModule):
    def __init__(self):
        super(Feature, self).__init__()
        pretrained =  True
        model = timm.create_model('mobilenetv2_100', pretrained=pretrained, features_only=True)

        layers = [1,2,3,5,6]
        chans = [16, 24, 32, 96, 160]
        self.conv_stem = model.conv_stem
        self.bn1 = model.bn1

        self.block0 = torch.nn.Sequential(*model.blocks[0:layers[0]])
        self.block1 = torch.nn.Sequential(*model.blocks[layers[0]:layers[1]])
        self.block2 = torch.nn.Sequential(*model.blocks[layers[1]:layers[2]])
        self.block3 = torch.nn.Sequential(*model.blocks[layers[2]:layers[3]])
        self.block4 = torch.nn.Sequential(*model.blocks[layers[3]:layers[4]])

        self.deconv32_16 = Conv2x_IN(chans[4], chans[3], deconv=True, concat=True)
        self.deconv16_8 = Conv2x_IN(chans[3]*2, chans[2], deconv=True, concat=True)
        self.deconv8_4 = Conv2x_IN(chans[2]*2, chans[1], deconv=True, concat=True)
        self.conv4 = BasicConv_IN(chans[1]*2, chans[1]*2, kernel_size=3, stride=1, padding=1)

    def forward(self, x):
        B, V, _, H, W = x.size()
        x = x.view(B * V, -1, H, W)
        #x = self.act1(self.bn1(self.conv_stem(x)))
        x = self.bn1(self.conv_stem(x))
        x2 = self.block0(x)
        x4 = self.block1(x2)
        # return x4,x4,x4,x4
        x8 = self.block2(x4)
        x16 = self.block3(x8)
        x32 = self.block4(x16)

        x16 = self.deconv32_16(x32, x16)
        x8 = self.deconv16_8(x16, x8)
        x4 = self.deconv8_4(x8, x4)
        x4 = self.conv4(x4)

        x4 = x4.view(B, V, -1, H // 4, W // 4)
        x8 = x8.view(B, V, -1, H // 8, W // 8)
        x16 = x16.view(B, V, -1, H // 16, W // 16)
        x32 = x32.view(B, V, -1, H // 32, W // 32)
        return [x4, x8, x16, x32]